Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Front Med ; 2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2259704

ABSTRACT

The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≽ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.

3.
Front Med ; 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2269785

ABSTRACT

With the recent ongoing autumn/winter 2022 COVID-19 wave and the adjustment of public health control measures, there have been widespread SARS-CoV-2 infections in Chinese mainland. Here we have analyzed 369 viral genomes from recently diagnosed COVID-19 patients in Shanghai, identifying a large number of sublineages of the SARS-CoV-2 Omicron family. Phylogenetic analysis, coupled with contact history tracing, revealed simultaneous community transmission of two Omicron sublineages dominating the infections in some areas of China (BA.5.2 mainly in Guangzhou and Shanghai, and BF.7 mainly in Beijing) and two highly infectious sublineages recently imported from abroad (XBB and BQ.1). Publicly available data from August 31 to November 29, 2022 indicated an overall severe/critical case rate of 0.035% nationwide, while analysis of 5706 symptomatic patients treated at the Shanghai Public Health Center between September 1 and December 26, 2022 showed that 20 cases (0.35%) without comorbidities progressed into severe/critical conditions and 153 cases (2.68%) with COVID-19-exacerbated comorbidities progressed into severe/critical conditions. These observations shall alert healthcare providers to place more resources for the treatment of severe/critical cases. Furthermore, mathematical modeling predicts this autumn/winter wave might pass through major cities in China by the end of the year, whereas some middle and western provinces and rural areas would be hit by the upcoming infection wave in mid-to-late January 2023, and the duration and magnitude of upcoming outbreak could be dramatically enhanced by the extensive travels during the Spring Festival (January 21, 2023). Altogether, these preliminary data highlight the needs to allocate resources to early diagnosis and effective treatment of severe cases and the protection of vulnerable population, especially in the rural areas, to ensure the country's smooth exit from the ongoing pandemic and accelerate socio-economic recovery.

4.
Nature ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2269386

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

5.
mBio ; 14(1): e0351922, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2230610

ABSTRACT

Coronavirus disease 2019 (COVID-19) severity has been associated with alterations of the gut microbiota. However, the relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19 patients, collected at the time of admission. Among the 2,568 high quality metagenome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs which showed differential distribution among mild, moderate, and severe/critical severity groups. Co-abundance network analysis determined that the 33 HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with Guild 2. Based on average abundance difference between the two guilds, the guild-level microbiome index (GMI) classified patients from different severity groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover, age-adjusted partial Spearman's correlation showed that GMIs at admission were correlated with 8 clinical parameters, which are predictors for COVID-19 prognosis, on day 7 in hospital. In addition, GMI at admission was associated with death/discharge outcome of the critical patients. We further validated that GMI was able to consistently classify patients with different COVID-19 symptom severities in different countries and differentiated COVID-19 patients from healthy subjects and pneumonia controls in four independent data sets. Thus, this genome-based guild-level signature may facilitate early identification of hospitalized COVID-19 patients with high risk of more severe outcomes at time of admission. IMPORTANCE Previous reports on the associations between COVID-19 and gut microbiome have been constrained by taxonomic-level analysis and overlook the interaction between microbes. By applying a genome-resolved, reference-free, guild-based metagenomic analysis, we demonstrated that the relationship between gut microbiota and COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover, the COVID-19-associated genomes were not independent but formed two competing guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at time of admission was associated with hospitalized COVID-19 patients at high risk for more severe outcomes. Moreover, the guild-level microbiome signature is not only correlated with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients from pneumonia controls and healthy subjects across different studies. Here, we showed the possibility of using genome-resolved and guild-level microbiome signatures to identify hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of admission.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Feces , Prognosis
7.
Nat Commun ; 13(1): 4667, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1984388

ABSTRACT

CRISPR diagnostics are powerful tools for detecting nucleic acids but are generally not deployable for the detection of clinically important proteins. Here, we report an ultrasensitive CRISPR-based antibody detection (UCAD) assay that translates the detection of anti-SARS-CoV-2 antibodies into CRISPR-based nucleic acid detection in a homogeneous solution and is 10,000 times more sensitive than the classic immunoassays. Clinical validation using serum samples collected from the general population (n = 197), demonstrates that UCAD has 100% sensitivity and 98.5% specificity. With ultrahigh sensitivity, UCAD enables the quantitative analysis of serum anti-SARS-CoV-2 levels in vaccinated kidney transplant recipients who are shown to produce "undetectable" anti-SARS-CoV-2 using standard immunoassay. Because of the high sensitivity and simplicity, we anticipate that, upon further clinical validation against large cohorts of clinical samples, UCAD will find wide applications for clinical uses in both centralized laboratories and point-of-care settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoassay , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
Front Med ; 16(2): 263-275, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1729392

ABSTRACT

Emerging evidence indicates that the gut microbiome contributes to the host immune response to infectious diseases. Here, to explore the role of the gut microbiome in the host immune responses in COVID-19, we conducted shotgun metagenomic sequencing and immune profiling of 14 severe/critical and 24 mild/moderate COVID-19 cases as well as 31 healthy control samples. We found that the diversity of the gut microbiome was reduced in severe/critical COVID-19 cases compared to mild/moderate ones. We identified the abundance of some gut microbes altered post-SARS-CoV-2 infection and related to disease severity, such as Enterococcus faecium, Coprococcus comes, Roseburia intestinalis, Akkermansia muciniphila, Bacteroides cellulosilyticus and Blautia obeum. We further analyzed the correlation between the abundance of gut microbes and host responses, and obtained a correlation map between clinical features of COVID-19 and 16 severity-related gut microbe, including Coprococcus comes that was positively correlated with CD3+/CD4+/CD8+ lymphocyte counts. In addition, an integrative analysis of gut microbiome and the transcriptome of peripheral blood mononuclear cells (PBMCs) showed that genes related to viral transcription and apoptosis were up-regulated in Coprococcus comes low samples. Moreover, a number of metabolic pathways in gut microbes were also found to be differentially enriched in severe/critical or mild/moderate COVID-19 cases, including the superpathways of polyamine biosynthesis II and sulfur oxidation that were suppressed in severe/critical COVID-19. Together, our study highlighted a potential regulatory role of severity related gut microbes in the immune response of host.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Clostridiales , Humans , Immunity , Leukocytes, Mononuclear , SARS-CoV-2
9.
Front Med ; 16(2): 251-262, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1699209

ABSTRACT

Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.


Subject(s)
COVID-19 , Humans , RNA , SARS-CoV-2/genetics , Single-Cell Analysis/methods , Transcriptome
10.
Knowledge-Based Systems ; : 107853, 2021.
Article in English | ScienceDirect | ID: covidwho-1568907

ABSTRACT

Aortic dissection is a rapid and critical cardiovascular disease. The automatic segmentation and detection of related organs and lesions in CT volumes of aortic dissection provide great help for the rapid diagnosis and treatment of aortic dissection. However, the diagnosis of aortic dissection involves multi-organ and lesion segmentation, which is also a multi-label segmentation problem. It faces many challenges, such as small target scale, variable location of the true and false lumen, and complex judgment. To solve these problems, this paper proposes a deep model (MOLS-Net) to segment and detect aortic dissection from CT volumes quickly and automatically. First, the sequence feature pyramid attention module correlates CT image sequence features of different scales and guides the current image segmentation by exploring the correlation between slices. Secondly, combine the spatial attention module and the channel attention module in the decoder of the network to strengthen the model’s positioning accuracy of the target area and the feature utilization. Thirdly, this paper designs a multi-label classifier for the inter-class relationship of multi-label segmentation of aortic dissection and realizes multi-label segmentation on the end-to-end network. In this paper, we evaluate MOLS-Net on multiple datasets (self-made aortic dissection segmentation dataset and COVID-19 CT segmentation dataset), and the results show that the proposed method is superior to other state-of-the-art methods.

11.
Cell Discov ; 7(1): 42, 2021 Jun 08.
Article in English | MEDLINE | ID: covidwho-1261993

ABSTRACT

The pathophysiology of coronavirus disease 19 (COVID-19) involves a multitude of host responses, yet how they unfold during the course of disease progression remains unclear. Here, through integrative analysis of clinical laboratory tests, targeted proteomes, and transcriptomes of 963 patients in Shanghai, we delineate the dynamics of multiple circulatory factors within the first 30 days post-illness onset and during convalescence. We show that hypercortisolemia represents one of the probable causes of acute lymphocytopenia at the onset of severe/critical conditions. Comparison of the transcriptomes of the bronchoalveolar microenvironment and peripheral blood indicates alveolar macrophages, alveolar epithelial cells, and monocytes in lungs as the potential main sources of elevated cytokines mediating systemic immune responses and organ damages. In addition, the transcriptomes of patient blood cells are characterized by distinct gene regulatory networks and alternative splicing events. Our study provides a panorama of the host responses in COVID-19, which may serve as the basis for developing further diagnostics and therapy.

12.
Front Med ; 14(6): 746-751, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-813358

ABSTRACT

The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered ß Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4+ and CD8+ cells were increased upon SARS-CoV-2 antigen stimulation. Together, these results indicate that durable anti-SARS-CoV-2 immunity is common in convalescent population, and vaccines developed from 614D variant may offer protection from the currently predominant 614D variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity/physiology , Antibodies, Neutralizing/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , T-Lymphocytes/physiology , Adult , Aged , COVID-19/blood , COVID-19/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Time Factors , Viral Proteins/immunology
13.
EBioMedicine ; 57: 102833, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-613483

ABSTRACT

BACKGROUND: The novel coronavirus pneumonia COVID-19 caused by SARS-CoV-2 infection could lead to a series of clinical symptoms and severe illnesses, including acute respiratory distress syndrome (ARDS) and fatal organ failure. We report the fundamental pathological investigation in the lungs and other organs of fatal cases for the mechanistic understanding of severe COVID-19 and the development of specific therapy in these cases. METHODS: The autopsy and pathological investigations of specimens were performed on bodies of two deceased cases with COVID-19. Gross anatomy and histological investigation by Hematoxylin and eosin (HE) stained were reviewed on each patient. Alcian blue/periodic acid-Schiff (AB-PAS) staining and Masson staining were performed for the examinations of mucus, fibrin and collagen fiber in lung tissues. Immunohistochemical staining was performed on the slides of lung tissues from two patients. Real-time PCR was performed to detect the infection of SARS-CoV-2. Flow cytometry analyses were performed to detect the direct binding of S protein and the expression of ACE2 on the cell surface of macrophages. FINDINGS: The main pathological features in lungs included extensive impairment of type I alveolar epithelial cells and atypical hyperplasia of type II alveolar cells, with formation of hyaline membrane, focal hemorrhage, exudation and pulmonary edema, and pulmonary consolidation. The mucous plug with fibrinous exudate in the alveoli and the dysfunction of alveolar macrophages were characteristic abnormalities. The type II alveolar epithelial cells and macrophages in alveoli and pulmonary hilum lymphoid tissue were infected by SARS-CoV-2. S protein of SARS-CoV-2 directly bound to the macrophage via the S-protein-ACE2 interaction. INTERPRETATION: Infection of alveolar macrophage by SARS-CoV-2 might be drivers of the "cytokine storm", which might result in damages in pulmonary tissues, heart and lung, and lead to the failure of multiple organs . FUNDING: Shanghai Guangci Translational Medical Research Development Foundation, Shanghai, China.


Subject(s)
Alveolar Epithelial Cells/pathology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Lung/pathology , Macrophages, Alveolar/pathology , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Autopsy , Betacoronavirus , COVID-19 , China , Coronavirus Infections/mortality , Cytokine Release Syndrome/mortality , Cytokines/blood , Cytokines/metabolism , Female , Humans , Hyperplasia/pathology , Male , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/mortality , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL